7.5 Project File LEW4.CPP
This file contains code to calculate the impulse response and the FFT.

Includes:

STDIO.H - library file with the standard input/output routines.
STDLIB.H - standard library file needed for exit function.
MATH.H - library file with math functions.

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

DATA - the number of real data points in the output data streams. Two successive data
points represent a complex number. The first is the real part and the second is the
imaginary part.

TWOPI - definition of 27t = 6.28318530717959.

SWAP - a data switching macro used by the FFT algorithm, little_four.

Structures:

ray_path - structure that contains all input and computed variables characteristic of a path.

The elements of ray_path are given on p. 28.
compute - structure that contains all the variables specific to the computations or not
specific to an individual path. The elements of compute are given on p. 29.

77

#include <stdio.h>
#include <math.h>

#define MAXLAYERS 3
#define DATA 4096
#define TWOPI 6.28318530717959

#define SWAP(a,b) tempr = (a); \
()= (b); \
(b) = tempr

typedef struct ray_path

{
float path_Distance, center_freq, penetrate_freq, thick_scale, maxD_hgt;
float peak _amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f; slp, tau_L, tau_U, tau_l, alpha, sigma_l, lambda;

3
typedef struct compute
{
int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;
|4

78

7.5.1. Function void little four

Description:
This function computes the complex FFT of a complex array and is called by slicedo. This
is an implementation of the FFT found in Press et al. [32, pp. 404-414]. A single data array
is passed in where the elements are alternating real and imaginary parts of complex numbers.
This data array is replaced (passed back) with the complex coefficients of its Fourier
transform. This function begins counting at 1, so the input array must be decremented by one

in the function call, e.g., little_four(data - 1, 4096, 1). Little_four is contained in file
LEW4.CPP.

Parameters passed to little four:
data - array of float, size 2 X nn, passed by reference, contains the complex impulse response
array.
nn - integer, must be a power of two, indicates size of the complex array.
isign - integer, a flag that indicates the desired direction of the FFT, 1 means the normal FFT
will be run while -1 means the inverse FFT will be run. Normalization for the
inverse case is not done within little_four.

Parameters returned by little_four:

data - array of float, size 2 x nn, contains the complex Fourier coefficients, returned by
reference.

Macros used:

SWAP - this macro simply swaps the value of two variables. Used by little_four in data
rearrangement.

Functions called:
sin - library function returns the sine of a real number. Needs MATH.H.
Code listing:

See Press et al. [32, pp. 404-414].

79

7.5.2. Function void imp

Description:

This function computes the impulse response for each time slice by computing and
superimposing the impulse responses for each layer. See (2) and (14). Imp is located in
LEW4.CPP.

Parameters passed to imp:

datb - array of float of size 2 x DATA, corresponds to cdat in slicedo.
pdsi - array of ray_path of size layers.
cdsi - array of compute of size 1.

start - pointer to float, current position in the random number array.
timexx - double, current slice time.
oo - integer, current time slice index.

Local variables:
tau_k - double, delay step.
gag - double, difference between tau_k and tau_I for current layer.
gg - double, gag divided by sigma_l.
exparg - double, argument of the combined exponential term.
squirt - double, result of the square root term.
sine - double, sine of exparg.

cosine - double, cosine of exparg.

xkm - float, real part of random variable term.
ykm - float, imaginary part of random variable term.

now - pointer to float, points to current term in the random number array, incremented
within imp.

r - integer counter.

80

Functions called:

sqrt - library function that takes the square root of a non-negative real number, needs

MATH.H.

exp - library function that raises e to a real number, requires MATH.H.

log - library function that takes the natural logarithm of a non-negative real number, needs
MATH.H.

sin - library function that takes the sine of a real number, needs MATH.H.

cos - library function that takes the cosine of a real number, needs MATH.H.

81

void imp(float datb[2 * DATA], struct ray_path pdsiiMAXLAYERS],

{

intr;

struct compute cdsi[1], float *start, double timexx, int 00)

/* Variables */

float xkm, ykm;
float *now;
double tau_k, gg, exparg, squirt, sine, cosine, gag;

/* Code */

now = start;
tau_k = cdsi[0].big_el;

for r=1;r <DATA/2;r++)

{

}

return;

tau_k += cdsi[0].delta_tau;

if ((gag = tau_K - pdsi[oo].tau_I) <= 0)
continue;

/* Bypass since log(gg) in squirt computation below will be
* undefined when tau_k is less than or equal to .tau_I */
else
gg = gag / pdsi[oo].sigma_l;

exparg = TWOPI * (timexx * (pdsi[oo].fds + pdsi[oo].slp *
(tau_k - pdsi[oo].tau_c)));

squirt = sqrt((pdsi[oo].peak_amplitude * exp(pdsi[oo].alpha *
(log(gg) - g8 + 1))));

sine = sin(exparg);

cosine = cos(exparg);

xkm = *now;

now++;

ykm = *now;

now++;

datb[r + r] += (float)(squirt * (cosine * xkm - sine * ykm));

datb[r + r + 1] += (float)(squirt * (cosine * ykm + sine * xkm));

} /* End of imp */

82

7.6. Additional Information

This section contains additional information that may be of use to understanding, executing,
manipulating, and changing the code.

7.6.1 Library Functions Used

exit - terminates the program, used to terminate for improper input arguments, and for unsuccessful
input or output file openings and closings, must include STDLIB.H.

log - returns the natural logarithm of a positive real number, must include MATH.H.

sqrt - returns the square root of a non-negative real number, must include MATH.H.

fmod - returns the fractional remainder of one positive double divided by another, must include
MATH.H.

pow - library function returns x to the power of y where x and y are type double, needs MATH.H.

cos - returns trigonometric cosine of a real number, must include MATH.H.

sin - returns trigonometric sine of a real number, must include MATH.H.

exp - returns e raised to the real argument, must include MATH.H.

fopen - opens files, requires STDIO.H.

fclose - closes files, requires STDIO.H.

fscanf - library function reads from files, requires STDIO.H.

printf - library function reads to files, requires STDIO.H.

fprintf - prints to file, requires STDIO.H.

malloc - allocates memory for the large data arrays, needs STDLIB.H.

free - unallocates memory block, needs STDLIB.H.

sinh - library function takes the hyperbolic sine of a real number, requires MATH.H.

83

7.6.2. Input Data File Format

This program reads input data from an ASCII file in the following order with white space between
values.

slices (integer)

delta_t (float) [Af]{microseconds}

afl (float)

layers (integer between 1 and 3 inclusive)
seed (integer between 1 and 30268 inclusive)

[For each layer]

path_Distance (float) [D] {kilometers}
center_freq (float) [f] {megaHertz}
penetrate_freq (float) [f,] {megaHertz}
thick _scale (float) [o] {kilometers}
maxD_hgt (float) [h,] {kilometers}
peak_amplitude (float) [4]

sigma_tau (float) [0.] {microseconds}
sigma_c (float) [o,] {microseconds}
sigma_D (float) [o,] {Hertz}

51 (float) [f;] {Hertz}

fdl (float) [f,,] {Hertz}

[] Indicates variable symbol.
{} Indicates units.

84

7.6.3. Function Calling Hierarchy

This section contains a modified function calling tree that indicates the functions, including library
functions that each function calls. A function calls the functions indented once immediately below
it. The hierarchy also indicates the function that calls particular functions. For example, function
main calls the functions init and doit. Little_el calls the function funvalue and the library function
pow. Ranl is called by the function get_2i_normals and the library function log is called by the
functions comp_arrays, big_c, funvalue, get_2i_normals, slicedo, and imp.

main
init
input_data
{exit, fscanf, printf}
{exit, fopen, fclose}
doit
comp_arrays
{sqrt, log}
big_c
{sqrt, sinh, log}
little_el
funvalue
{log}
{pow}
{exit}
outl
slicedo
rvgexp
get_2i_normals
ranl
{fmod}
ran2
{sqrt, log}
{cos, sin, log, sqrt}
outit
imp
{sqrt, exp, log, sin, cos}
little_four
{sin}

{} - indicates library functions.

85

